U svetu u kojem se sve više oslanjamo na digitalne tehnologije, pojam "brz kompjuter" više nije dovoljan. Danas govorimo o mašinama koje ne funkcionišu po zakonima klasične fizike, već koriste principe kvantne mehanike – najdublje i najsloženije teorije koje poznajemo. U ovom tekstu vam donosim osnovno razumevanje kvantnih računara, sa posebnim fokusom na najnoviji kineski kvantni računar Zuchongzhi-3, koji je pomerio granice mogućeg.
Hajde da prvo vidimo šta su uopšte kvantni računari?
Pre svega, dugujem jednu napomenu: ovaj tekst je rezultat istraživanja u domenu dostignuća kvantnih računara, ali pošto se ja takvim računarima ne bavim profesionalno, moguće su neke nepreciznosti u tekstu ili nedovoljno jasno objašnjenje, koje proističe iz mog ograničenog znanja. Nadam se, ipak, da je tekst dovoljno precizan i prijemčiv za sve.
Dakle, za razliku od klasičnih računara koji obrađuju informacije pomoću bitova (0 ili 1), kvantni računari koriste kubite (quantum bits), koji mogu istovremeno biti i 0 i 1 zahvaljujući fenomenu superpozicije. Šta je superpozicija? Zamislite jedan novčić koji se ne nalazi ni na glavi ni na pismu, već istovremeno lebdi u oba stanja. Dok ga ne pogledate (ili izmerite), ne možete znati ishod. Kubit se ponaša slično – sve dok se ne „izmeri“, nalazi se u više stanja odjednom.
Još impresivnije, kubiti mogu biti "uvezani" – u stanju kvantne upletenosti (entanglement) – tako da promena jednog momentalno utiče na drugi, bez obzira na razdaljinu. Ovo omogućava kvantnim računarima da obrađuju ogromnu količinu podataka paralelno – daleko brže od bilo kojeg klasičnog sistema. Ogromna paralelna moć obrade, koja u određenim zadacima – kao što su nasumične kvantne simulacije – omogućava da kvantni računar bude milion milijardi puta brži od klasičnog.
U tom smislu, najnoviji kineski kvantni računar pod imenom Zuchongzhi-3 pravi novi prodor u kvantnu dominaciju Kine.
Kineski istraživači sa Univerziteta za nauku i tehnologiju Kine, razvili su kvantni računar koji koristi 176 fizičkih i 162 logička kubita, i prema nezavisnim analizama, sposoban je da izvrši zadatke koje nijedan klasični superračunar danas ne može da postigne. Testirano je poređenje brzine na zadacima nasumičnog uzorkovanja – i kvantni procesor je bio toliko brži da bi klasičnom računaru trebalo 10 miliona godina da ga stigne.
Posebno je testiran na zadatku poznatom kao random circuit sampling – gde se meri koliko brzo može da generiše i proveri složene nasumične kvantne šeme. Klasičnom računaru bi za isti zadatak trebalo nekoliko miliona godina, dok je Zuchongzhi-3 ovaj posao završio za milisekundu.
Drugim rečima, Zuchongzhi-3 je za određeni zadatak bio više od 10¹⁵ puta brži (milion milijardi puta) od najmoćnijeg poznatog klasičnog računara. Poređenja radi, ako bi klasičnom računaru trebalo 10 godina, kvantnom bi za isti problem trebalo manje vremena nego svetlosti pređe daljinu jednaku debljini dlake.
Pogledajmo sada koje su primene kvantnih računara, to jest gde kvant briljira.
Ovde samo jedna napomena: kvantni računari nisu zamišljeni da pokreću aplikacije kao što su Word, Chrome, photoshop ili igrice. Njihova snaga leži u rešavanju vrlo specifičnih tipova problema:
1. Kriptografija
Korišćenjem takozvanog Shorovog algoritma, kvantni računari mogu efikasno faktorisati ogromne brojeve – što potencijalno ugrožava današnje sigurnosne protokole poput RSA enkripcije. Na sreću, čak i najbolje opremljenim hakerima, ovakvi računari su i dalje apsolutno nedostižni, jer jedan takav kompjuter danas košta oko 100 miliona dolara i više. Čak i da neko ima te pare, skoro nikako ne bi mogao nabaviti, kupiti, niti prići takvom računaru. Naravno, za sada.
2. Simulacija molekula i materijala
Klasični računari ne mogu efikasno simulirati kvantna ponašanja molekula. Kvantni računari to rade „prirodno“ – što otvara vrata revolucionarnim otkrićima u farmaciji, hemiji i tehnologiji.
3. Optimizacija
Od rasporeda voznog parka, organizovanja morskog, vazdušnog, železničkog i drumskog saobraćaja, do pravljenja i organizovanja strategija u lancima snabdevanja – kvantni algoritmi mogu ispitivati i ponuditi više mogućih rešenja istovremeno, umesto da idu jedno po jedno.
4. Monte Carlo simulacije
U modelima koji uključuju velike količine verovatnoće i nasumičnosti (npr. finansijska tržišta, vremenska prognoza), kvantni računari imaju potencijal da daju preciznije i brže predikcije.
Da vidimo sada kako izgledaju kvantni računari? Oni ne liče na obične desktop mašine. Većina kvantnih računara za svoj rad zahteva temperaturu blisku apsolutnoj nuli (−273.15 °C), vakuumske komore i superprovodna kola, kao i izuzetno osetljive sisteme za očuvanje koherencije. Zato kvantni računari trenutno postoje samo u laboratorijama i institutima i još nisu dostupni za masovnu upotrebu.
Ali, kao što obično biva u doba tehnološke eksplozije, svet u koji vode nije daleko, tako da je sasvim moguće da kvantne računare ubuduće vidimo i u našim domovima.
Današnje kvantne platforme dolaze u raznim oblicima: od supravodničkih kola (kao što koristi Zuchongzhi-3 i Google Sycamore), do jonskih zamki, fotonskih sistema i čak topoloških pristupa koje još uvek razvija Microsoft. Mi živimo u trenutku u kome matematika, fizika i inženjering stapaju granice stvarnog i naučno-fantastičnog. Kvantni računari ne rešavaju sve probleme, ali tamo gde jesu primenjivi otvaraju vrata koje do sada niko nije mogao ni da otključa, a kamo li otvori.
U našoj eri, kada svet digitalne tehnologije već liči na magiju, kvantni svet tek ulazi na scenu i verujte, tek ćemo ga upoznati kako vreme protiče, jer mnogi misle da je budućnost računarstva upravo u kvantnim računarima.
PS. u pripremi ovog teksta, tražio sam pomoć veštačke inteligencije oko nekih nedoumica, jer kao što sam napomenuo na početku teksta, kvantnim računarima se ne bavim profesionalno kao standardnim hardverom i softverom. Nemam ni jedan razlog da ovo krijem, naprotiv. AI već sada može prilično pomoći, pa zašto ne iskoristiti tu mogućnost? Za tekstualna objašnjenja sam koristio Qwen 2.5-Max, a za generisanje nekih slika i ilustracija OpenAI DALL-E.